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Fault detection and localization is a critical technology for ensuring the safe and cefficient operation of train
transmission systems (TTS). However, due to the frequent scarcity or absence of fault data, achieving precise
detection and localization faces many challenges. To address this challenge, this paper proposes a novel pseudo-
fault data enhanced relation network (PE-ERN) for fault detection and localization in TTS. The PE-ERN method
generates pseudo-fault data by combining fault information from similar external equipment and out-of-
distribution data. This strategy enriches the training dataset, enabling model to extract intrinsic heath state
information from available health data. Additionally, a feature concatenation mechanism is developed to
generate feature pairs by combining health state data with pseudo-fault data. This mechanism uncovers both
health-unique and health-inherent attributes, which enhances the PE-ERN’s ability to distinguish between fault
and health states. Experimental results from subway TTS cases demonstrate that the proposed PE-ERN method
outperforms existing fault detection techniques, achieving superior fault localization and detection accuracy
across various fault modes, including single-fault, component-level compound-fault, and system-level compound-

fault scenarios.

1. Introduction

As a critical component of modern transportation, railway transit has
experienced remarkable advancements fueled by Industry 4.0 technol-
ogies (Zhao et al., 2025; Dou et al., 2025). With increasing operational
speed and system complexities, prognostics and health management of
railway systems, particularly train transmission systems (TTS), have
emerged as critical concerns (Ding et al., 2024a; Gao et al., 2025; Liu
et al., 2022). The reliability and safety of railway operations hinge on
the condition of critical transmission components, such as traction
motors, gearboxes, and axle boxes (Ding et al., 2024b; Chen et al.,
2023a). Failures in these components can precipitate catastrophic con-
sequences, underscoring the urgent need for continuous monitoring and
real-time fault detection in TTS. By integrating smart sensors, the
internet of things, and advanced data analytics, fault detection systems
can significantly reduce downtime, mitigate economic losses, and
enhance operational safety.

Deep learning techniques have become widely adopted for TTS fault
detection, with approaches like convolutional neural networks (CNN)
(Wang et al., 2023; Yu and Zhao, 2020), residual networks (ResNet)

(Chen et al., 2023b; Wang et al., 2024; Mao et al., 2024), and graph
neural networks (GNN) (Mao et al., 2024; Gao et al., 2024; Liang et al.,
2024) showing promising results. However, the efficacy of these ap-
proaches typically relies on the availability of substantial labeled fault
data, which is often scarce in real-world industrial settings (Wang et al.,
2025a; Xu et al., 2025; Li et al., 2024). While health data is relatively
abundant, the shortage of fault data poses a significant barrier to the
practical deployment of deep learning models (Zhao et al., 2024; Wang
et al., 2025b). Moreover, operating TTS in a faulty condition is generally
unacceptable, necessitating proactive monitoring to prevent fault esca-
lation. The scarcity of fault data remains a primary challenge in
leveraging deep learning for effective TTS fault detection.

To address the challenge of fault detection in the absence of fault
data, transfer learning (TL) has emerged as a potential solution, trans-
ferring from labeled data in a source domain to an unlabeled target
domain (Wang et al., 2025¢; Chen et al., 2025a; Zhang et al., 2024). TL
enables the transfer of knowledge from a labeled source domain to an
unlabeled target domain and has shown success in TTS fault detection
and diagnosis, particularly when fault data is simulated in controlled
experimental setups. (Cao et al., 2022; Wang et al., 2025d; Guo et al.,
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2019). However, the effectiveness of TL is often constrained by the de-
gree of similarity between the data distributions of the source and target
domains. Mechanical differences across machines frequently result in
substantial distributional disparities, requiring time-intensive model
fine-tuning for each unique target system.

When fault samples are unavailable, fault detection can be reframed
as a binary classification task: distinguishing between healthy and faulty
states. Recent research has developed fault detection methods that rely
solely on health state data, identifying faults by assessing the similarity
between health data and data from unknown states (Chen et al., 2022,
2025b; Ma et al., 2025). Fault detection techniques like Autoencoders
(Jiang et al., 2017; Liu et al., 2018), long short-term memory networks
(Lei et al., 2019; Xiang et al., 2021), and graph neural networks (Ma
etal., 2023; Chen et al., 2023c) perform nonlinear mappings to correlate
inputs and outputs through health state data. Fault states are identified
by evaluating the feature similarities between the fault and health states.
However, Fault detection models trained exclusively on health data
often struggle to create robust nonlinear mappings, rendering them
overly sensitive to normal variations in data, especially in the presence
of noise or unexpected fluctuations in health signals. Additionally, most
existing fault detection models focus solely on determining whether a
system is healthy or faulty, without pinpointing the specific location of
the fault. In industrial contexts, both detecting and localizing faults are
critical for devising effective maintenance and repair strategies.

This paper proposes a novel pseudo-fault data enhanced relation
network (PE-ERN) tailored for fault detection and localization in TTS,
particularly when actual fault data is absent. The method addresses the
challenge of zero-fault-data scenarios by generating pseudo-fault data,
enabling robust fault detection. Given the complex interactions among
adjacent TTS components—such as traction motors, gearboxes, and axle
boxes—that often hinder accurate fault localization, PE-ERN employs a
dedicated relation network (ERN) for each key component.

These networks construct feature pairs by combining pseudo-fault
data with health state data, allowing precise similarity assessments to
determine each component’s fault state. Extensive testing on subway
TTS demonstrates PE-ERN’s superior performance in detecting and
localizing faults across diverse scenarios, including single faults,
component-level compound faults, and system-level compound faults,
underscoring its robustness and adaptability for real-world industrial
applications.

The key contributions of this work are as follows: 1) A novel PE-ERN
is proposed to tackle the challenge of detecting and locating faults in TTS
under zero-fault-data conditions. By overcoming the reliance on scarce
fault data, this method effectively handles complex fault scenarios, of-
fering a significant advancement over traditional methods that struggle
with data limitations; 2) To address the scarcity of fault data, a pseudo-
fault dataset is constructed by leveraging fault data from external
equipment with similar failure modes to the TTS. Additionally, out-of-
distribution data (OODD) are generated by applying a soft Brownian
offset to health state data. This approach enriches the training set,
enhancing the ERN model’s ability to capture intrinsic health state
patterns while reducing over-sensitivity to normal variations in health
data; 3) A feature concatenation mechanism (FCM) is produced to
establish feature pairs between the health state and the pseudo-fault
data, uncovering both health-unique and health-inherent attributes.
This mechanism significantly improves the model’s capacity to distin-
guish subtle differences between fault and health states, thereby
enhancing detection accuracy and fault localization across diverse fault
types.

The organization of the paper is as follows: Section 2 covers the
foundational concepts of the relation network and soft Brownian offset.
The methodology is detailed in Section 3. Section 4 discusses the anal-
ysis of experimental results, while Section 5 provides the conclusion of
the study.
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2. Preliminaries
2.1. Relation network

The relation network is originally developed for few-shot classifica-
tion (Sung et al., 2018). In contrast to conventional deep neural net-
works, which depend on extensive datasets, it is capable of achieving
accurate classification with minimal training data. As shown in Fig. 1,
the relation network consists of two key components: the feature
embedding module £, (e) and the relation module g, ( -). Initially, two
sets are first constructed: the support set x; with labeled data and the
query set x; with unlabeled data. These sets are fed into the embedding
module f, (o) to extract their features, resulting in the corresponding
feature vectors:

8&s :fw(xs) (@)
& :fqa(xq) (2

where the feature vectors for the support set x; and the query set x, are
denoted as g; and g, respectively. ¢ represents the learning parameters
of the embedding module f,, (e).

Next, the feature vectors g and g; are combined through a concat-
enation operation C(-, -), as follows:

&sq :C<gsvgq) :C(fw(XS)afw (xq)) 3)

where g; 4 is the feature pairs by combining g and g,. Finally, this feature
pairs are passed into the relation module g,( -) to calculate the relation
score:

rs,q = g¢ (gx.q) = g¢ (C (f(p (xx)vffﬂ (x‘I) ) ) (4)

where r;, denotes the relation score between x; and x;. ¢ is the
parameter of the g,(-).

During the training phase, the loss function of the relation network is
calculated using the mean square error (MSE) as follows:

n

L=33 (-’ ©)

s=1 gq=1

where r; ; represents the predicted relation score between x; and x,, and
rf;l is the true relation score. The true score is 1 when x; and x; belong to
the same class, and 0 if they are from different classes.

2.2. Soft Brownian offset

Utilizing the Soft Brownian Offset method (Moller et al., 2021),
which draws inspiration from the Gaussian hyperspherical offset
approach, OODD is produced by projecting a data point x € #7 onto a
hypersphere. The radius  for this projection follows a normal distri-
bution , ~ .7°(0,Ip), with I, being the identity matrix, ¢ representing the
standard deviation. A vector v is drawn from the distribution .7"(0,Ip),
and its magnitude is normalized to form a unit vector. In this way,
out-of-distribution data (OODD) are evenly distributed on the hyper-
sphere, as described by the following equation:

7(u,0) :I’V‘V|71 +on (6)

However, the Gaussian hyperspherical offset method assumes that
the data points follow a normal distribution, which may limit its
applicability. To overcome this, the soft Brownian offset method was
introduced, which takes inspiration from Brownian motion. This method
iteratively shifts a data point x € X away from its starting position in the
dataset X, seeking to distance it as much as possible from the original
data distribution. The process starts by randomly picking a sample point
x from the dataset. Over several iterations, this point is fine-tuned until
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Fig. 1. Relation network structure.

its soft distance d” exceeds a set threshold. The soft distance d” is defined
asd’ = dyi(X,X), where X s the updated data point. To set the boundary
for this adjustment, a rejection probability . is used, which ranges be-
tween 0 and 1, and is expressed by the following equation:

e - -1
/’(dkvdi?o_) = (1 + exp (dg;':i )) 7

As the values of d* and d- increase, the probability .(d",d",0)
gradually decreases. To ensure a high probability when d* = 0, the
parameter k = 7 is recommended, and ¢ should be adjusted between
0 and 1 to control the softness of the boundary. The probability
p(d’,d",0) decreases as both d" and d~ increase. To ensure that p re-
mains high when d* = 0, it is advised to set the parameter k = 7 and
modify the boundary softness using o, is constrained within the interval
[0,1]. Fig. 2 illustrates how the soft Brownian offset method generates

* In-distribution
Out-of-distribution

Fig. 2. Producing OODD within the latent space.

data points that lie outside the conventional distribution. These OODD
points are located close to the feature space of the health state data,
making them suitable for use as fault data. This proximity enables them
to enhance fault detection accuracy, especially when the training is
based solely on health state data.

3. Methodology
3.1. The proposed framework

A typical TTS comprises a traction motor, a driving gearbox, and two
axle boxes. Faults in these components can pose serious safety risks,
underscoring the need for advanced intelligent solutions capable of
detecting and localizing such faults. However, the scarcity of fault
samples and the complex interactions between adjacent components in
the TTS make it challenging to accurately detect and localize faults using
standalone fault detection models. To address these difficulties, this
study proposes constructing independent fault detection networks for
the traction motor, driving gearbox, and axle boxes, supported by
pseudo-fault data to improve model performance. As illustrated in Fig. 3,
the PF-ERN-based fault detection and localization framework is
composed of two main stages: the training phase and the detection
phase.

During the training phase, sensors are installed at each key compo-
nent of the TTS to monitor its operating conditions. Historical health
state data for the K key component is collected and represented as gy
(D, Dy, -+, TR, with 7% indicating the data pertaining to the K — th
component. Additionally, a pseudo-fault database 7y is constructed to
enable ERN to fully extract hidden information from the health state.
The pseudo-fault database &y comprises external equipment fault
datasets 7 and corresponding OODD o (Zy, 73, +++, 7% ) generated
from the health data of each key component. Subsequently, corre-
sponding ERN models are constructed for each key detection component
based on the training dataset 7| 7%; 7k (%5, 7§)]. The ERN primarily
consists of a residual shrinkage feature extractor (RSFE), a feature
concatenation mechanism (FCM), and a Kolmogorov-Arnold network
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relation evaluator (KANRE). Specifically, the RSFE extracts features
from the training dataset 7| Z%; 7k (Zg, Z§)]. The resulting feature
sets, gk and g&, represent the health state features and the pseudo-fault
features at the K — th key component, respectively. These feature sets are
then processed by FCM, which concatenates g and gf to generate
feature pairs (g, gk ). The KANRE analyzes these feature pairs,
assessing their similarity and computing corresponding relation scores.
This process effectively evaluates the similarity between health state
features and pseudo-fault features to achieve fault detection for K— th
component. Each ERN is optimized by minimizing the loss between
predicted and actual relation scores, enabling it to effectively evaluate
feature relationships. In summary, the fault detection and localization
process based on PF-ERN M( %y, ZF; ) for TTS, using the K ERN model
My (7%, 7%, 6x), as outlined in the following workflow.

Here, 0k represents the learnable parameters of the K ERN model.
Sk(7%, 7%) denotes the similarity between &5 and 7% at the K— th
key detection component. Similarly, r, _ and (Cy or Cr)* correspond to
the relation scores and the predicted condition for the K— th key

detection component, where Cy denotes the health state and Cr in-
dicates the fault state.

During the detection phase, real-time monitoring data &y ( 711\,, 9,2\,,,
. Qﬁ) are collected from the K key components within the TTS, where
X represents the signals collected from the K — th key detection
component. These monitoring data, which may reflect either a healthy
or faulty state, are processed by the proficiently trained PF-ERN model
M(Zu, ZF; {). The model analyzes the monitoring data & M(?j}w, 7,%,,,
-, 7%) by comparing them against historical health state data 7,
generating relation scores that indicate the similarity between & M((/}W
Dy, -, 7%) and Ty for each component. This process is formalized as
follows:
M (T, Tag; 1) ST 7)) | T
M(Zy, Z : :

- -

MK(“ngv gl\K/Iﬂ 01() SK(“ngv 911\/1) rlf/f,'/

9

The state of each key component in the TTS is determined using the
following strategy:
Health, r! 7, > HB
: (10)
Fault, " « < HB

where HB represents the health baseline. If r’ﬁ/ X ot > HB, the K— th key
detection component of TTS is classified as being in a health state.
Conversely, if rK/ x o1 < H, the K — th key detection component is iden-
tified as exhibiting a fault. Using this strategy, the PF-ERN model

M(Zu, ZF;¢) effectively performs machinery fault detection and
localization.

7 (Cy or Gg)!
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3.2. Pseudo-fault data enhanced relation network structure

The PF-ERN consists of four key modules: the pseudo-fault database
construction, the Continuous Wavelet Transform (CWT), the RSFE, the
FCM, and KANRE. Each module contributes uniquely to the overall
functionality of the PF-ERN.

(1) Pseudo-Fault Database Construction

The pseudo-fault database &y is systematically constructed to
improve the performance of the ERN by enabling it to effectively extract
the hidden and latent information from the health state data. This
database serves as a crucial module in the fault detection and localiza-
tion framework. It provides a synthetic yet realistic representation of
fault scenarios, enabling the model to train effectively even without

—

: (8
(CH or CF)K

actual fault data. By generating pseudo-fault data, the training dataset is
enriched, which improves the model’s ability to generalize across
different fault types.

The pseudo-fault database &, as shown in Fig. 4, consists of
external equipment fault datasets &g and corresponding out-of-
distribution datasets 7o (?,/?(1), ;?/%(2), ;710(). The external equipment
fault datasets g are constructed by leveraging data from similar fault
types observed in other equipment, based on the common fault types
occurring in the TTS. On the other hand, the OODD Zo(Zg, 72, -,
%) are generated from historical health state data 7y (7}, 75, 7%,
7%) collected from key component in the TTS. These health data are
processed by the OODD generator G( -) to produce OODD & (;7/(1), g2
- f/g ) According to equations (6) and (7), the generation mechanism
of G(-) is as follows:

Pseudo-Fault Database D

Out-of-Distribution Datasets

s Dg
S —
7 w—
|
Constructing| datasets
i T T 1] e
X u
I ] ]
—rn | o 1 |
D}; A D%, Ar DE{ A D§ A e Short circuit

e Broken rotor bar
e Gear crack tooth

. Bearin'g cage fault

: Right axle box
Left axle box

Gearbox

Fig. 4. Pseudo-fault database construction.
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Do= EK G(Zy,N)= EK EN X +a~-ﬁ+an« 1D
70 / “H> / / H j |]J| J

i=1 i=1 j=1 -

where N represents the number of OODD samples to be generated for
each health state data 7%, The radius a; for the j — th sample is drawn
from normal distribution .#"(0,Ip), while .7; is a random vector sampled
from .7°(0,Ip), normalized by its magnitude |.~;|. Consequently, K cor-
responding training datasets 77X (Zs, 7 ) are constructed for the K— th
ERN models.

The combination of Z and &, into the pseudo-fault database &
creates a robust training set that merges external fault knowledge with
system-specific fault simulations. This approach not only enriches the
dataset but also enables the model to effectively extract hidden and
latent information from the health state data, improving its general-
ization and fault detection capabilities across a wide range of scenarios.

(2) CWT

The CWT (Yan et al., 2014) is utilized on raw vibration signals to
identify health-related traits at multiple resolutions, creating
time-frequency images that reflect key characteristics. The wavelet
transform is defined by the following equation:

+00 _
W Tt t) = || 2 / f(t)(/;(t”—/f) dt 12)

where « represents the scaling factor. 7 is the translation parameter. f( -)
is the input signal. ¢(-) is the mother wavelet function. All training
datasets are transformed into time-frequency images using CWT and fed
into the RSFE.

(3) RSFE

The impact of noise on feature extraction is particularly pronounced
in real-world industrial scenarios, significantly undermining the accu-
racy and reliability of fault detection (Wang et al., 2025e). To this end,
Residual shrinkage network (RSN) (Zhao et al., 2020) serves as the
backbone for feature extraction. The RSN is effective in suppressing
noise and enhancing the representativeness of extracted features. Unlike
traditional ResNets, the RSN incorporates a soft thresholding

Input features

Feature concatenation
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mechanism that filters out irrelevant features while preserving key data.
This approach also helps maintain stable gradients during back-
propagation, mitigating common issues in deep networks such as van-
ishing and exploding gradients.

The RSN architecture incorporates four residual shrinkage units,
along with an average pooling layer. Each residual shrinkage unit, in-
cludes a specialized module for calculating soft thresholds. This module
uses Global Average Pooling (GAP) to compute the absolute values of
feature x, generating one-dimensional vectors. These values are then
passed through a fully connected layer to determine scaling factors,
which are constrained between [0, 1], using a sigmoid function:

1

1 +e 13

a
where » is the output from the fully connected layer. The threshold r is
for the soft thresholding is then computed as:

T=a-average |x;;| 14)

Here, x;; refers to the feature at position (i,j) and channels c. The
threshold 7 is carefully calibrated to ensure efficient noise suppression
while retaining key features. This design enhances the module’s ability
to handle noisy data while maintaining robust feature extraction.

The RSFE can extract features (g, g%, -, g%) and (g}, &%, -, gK) for

the Iy (I, 7%, ~, 7%) and C/F<f/},@/§, PJF), respectively.

(4) FCM

To enhance the ability of the PF-ERN to evaluate similarity between
the feature sets (gf;,8%, -+, gk) and (g}.82,-,8% ), a novel FCM process is
introduced, which creates feature pairs. The FCM employs two distinct
concatenation mechanisms to uncover both health-unique and health-
inherent attributes. These splicing mechanisms enable the model to
capture both the distinctive patterns that separate healthy and faulty
states, and the general health-related characteristics across multiple
detection components in the TTS, as shown in Fig. 5.

The first FCM focuses on revealing health-unique attributes by
concatenating the health features (g}, g%, -+, &) with pseudo-fault fea-
tures (g}, g%, -+, gk ). This concatenation operation serves to expose the
subtle differences between the normal and pseudo-fault states for each

Feature pairs
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Fig. 5. Feature concatenation mechanism.
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key detection component within the TTS. Specifically, for each compo-
nent, the concatenation is expressed as follows:

S = (8 8F]

: as)
gll-(;,F = {gﬁ'gﬂ

where g& represents the health features of the K — th key detection
component, and g& denotes the pseudo-fault features at same compo-
nent. The notation [, -] indicates the concatenation operation applied
between health features and pseudo-fault features for each component.
This concatenation operation is repeated for all key components,

resulting in a set of feature pairs (g},_F, R g,IfI’F). These pairs are

designed to capture and emphasize the distinguishing features of the
health and fault states at each critical component.

The second FCM aims to uncover the health-inherent attributes by
concatenating the health state features of each component with them-
selves. This captures the fundamental, consistent patterns within the
health state, regardless of the specific fault scenario. This operation is
defined as:

S = (8 8H)
: (16)
gJI-(I.,H = {gligagfl]

The resulting feature pairs (g}{_H, L ,ggH) represent the inherent

characteristics shared by the health states across different components
in the TTS. By focusing on the health-inherent attributes, the PF-ERN
method effectively captures the commonalities within the health state,
ensuring that the model is not overly sensitive to noise or fluctuations in
the data.

(5) KANRE

The KANRE is engineered to capture the deep and intricate re-
lationships within feature pairs, which include health state features

(g}I‘H,gf,‘H,-u,g,’;H) and pseudo-fault features (g},_F, & gf,F)

Flatten|

(pn,Sl 2
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Leveraging its multi-layer architecture, as depicted in Fig. 6, the KANRE
iteratively extracts complex relationships between these feature pairs. It
achieves this by modeling the connection between inputs and outputs
through the composition of univariate continuous functions at each
layer. The input activation values g; are transmitted to the subsequent
layer, where they undergo a series of one-dimensional nonlinear trans-
formations, yielding the output g;,;. This layer-to-layer propagation is
mathematically expressed as:

8= i i (gz.i) an
1

Here, g;; represents the activation value of the i — th neuron in the [ —
th layer, and ¢;;; is the activation function for that neuron. With each
layer’s transformation, the KANRE progressively uncovers and models

the intricate relationships within the feature pairs <g}{_H,g§,,H7 "'1gIISI"H>

and (g}ﬂ, &5 7gﬁF) The activation function ¢(g) in the KANRE is

composed of a basis function and a spline function. Specifically, the
activation function within the KANRE is composed of two components: a
basis function b(g) and a B-spline function spline(g). Specifically, the
activation function is constructed as a weighted combination of these
components:

$(g) = wp(g) + wsspline(g) 18)

Where, SiLU activation function is used for the basis funciton b(g)

SILU(g) = +gefg 19)

The spline function spline(g) is represented as a linear combination
of B-spline basis functions:

spline(g) = Z”iBi (8) (20)

i

where (; is trainable coefficients, and B;(g) is the i — th B-spline basis
function. This combination of basis and spline functions allows the
KANRE to adapt its nonlinear representations based on input features,
thereby improving its flexibility and effectiveness.

Through successive layer-wise propagation, the KANRE constructs

\ _ relation
7 score

Fig. 6. Kolmogorov-Arnold Network relation evaluator structure.
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Fig. 7. Experimental platform of subway train transmission systems.

and refines the complex relationships between the input feature pairs. In
the final layer, information from all preceding layers is aggregated via a
weighted summation to generate the ultimate output. For a KANRE with
a depth of 4, this output is represented as:

KAN(g) = (¢4 3 - b2 - b1_2)80 21

Each layer ¢, consists of a matrix of one-dimensional functions that
incrementally extract and model the similarities and differences be-
tween the feature pairs. The final output layer consolidates all features
into a relation score matrix, which quantifies the similarity or correla-
tion between the feature pairs:

N
r=GELU (BN (Concat ( Z F® g) ) ) (22)
1

where, GELU serves as the activation function, BN is batch normaliza-
tion, Concat represents concatenation, and ® denotes the interaction
between features. The use of GELU helps to effectively mitigate over-
fitting in the KANRE. The final relation score r lies within the range [0,1],
reflecting the probability that the feature pair belongs to the same class.
For each key detection component, a relation score matrix is computed.
The combined relation score matrix is represented as

1 1
Tyr - THfF
1 1
A |THE " THH
P= .
1 1
Ter  TRF
Rp = i (23)where r¥ refers to predicted
e v ThE
TR
rg - H . b
TR Thr

relation score corresponding to K — th key detected component.

3.3. Training strategy

The PF-ERN model’s is calculated by evaluating the difference be-
tween the predicted relation score Rp and actual relation score Rry.
Below, the matrix layout depicting Ry is presented by

ro - 07
1 1
el
(1 - 1]
Rr= : 24
r0 - 07
1 1
.
(1 - 1

Following this, the loss is computed using the MSE function, which is
expressed as:

Luss= Y (Ro —Rp)* =" Loss;= (rh — i) (25)

Here, r}, and ri, represent the predicted and actual relation scores for the
i — th feature pair. The total loss across all pairs is the sum of the squared
differences. Let 0y, and 6y, .. represent the parameters of the RSFE and
KANRE, respectively. The loss function is then optimized with respect to
these parameters by minimizing the following objective:

5;RSFE ) 5_;KANRE « argmin Lyse (efRSFE’ ngANRE) e

fRsFE **SKANRE

In this equation, 5_;RSFE and 5;mna represent the optimal parameters that
minimize the loss function, ensuring the alignment of the predicted
relation scores with the actual scores. This optimization allows the PF-
ERN to improve its ability to model the complex relationships be-
tween feature pairs.

4. Experiment study
4.1. Experimental setup and dataset description
A fault simulation experiment using subway TTS (Ding et al., 2024a)

is carried out to showcase the effectiveness of the PF-ERN in detecting
and locating faults. As illustrated in Fig. 7, the experimental platform is



Z. Duan et al. Engineering Applications of Artificial Intelligence 158 (2025) 111515

designed and scaled at a 1:2 ratio relative to the actual subway train Table 1
bogies. The transmission system consists of a motor, a gearbox, and two Health state in the datasets.
axle boxes. The entire system is powered by a three-phase asynchronous Mode Fault Fault type Fault code Sample
AC motor, with the load applied through electro-hydraulic load equip- location size
ment. The motor utilizes SKF6205-2RSH bearings, and the reduction Single Fault Motor Health MO 2000
gearbox is equipped with helical gears. The driving gear has 16 teeth, Short circuit M1 1000
while the driven gear features 107 teeth. The axial bearing for the Broken rotor M2 1000
driving gear is an HRB 32305 model, and the axle box bearing type is bar
e
The subway TTS is equipped with four key detection components: Gearboxes Health Go 2000
traction motors, driving gearboxes, and left and right axle boxes (see Gear cracked Gl 1000
Fig. 7). Vibration sensors are assigned to each component for monitoring tooth
purposes. To investigate various fault scenarios, experiments were g}eoat;mm G2 1000
conducted across three modes: single fault mode, component-level Gear missing  G3 1000
compound fault mode, and system-level compound fault mode. As tooth
detailed in Table 1, a total of 21 fault experiments were carried out, Gear chipped G4 1000
consisting of 16 single-fault experiments, 2 component-level Furukawa tooth
fault experiments, and 3 system-level compound fault experiments. ﬁfj;;nrice 63 1000
Fig. 8 presents photographs illustrating the fault. fault
simulations conducted during the experiments. Vibration sensors Bearing G6 1000
were configured with a sampling rate of 64 kHz, and was run for a outer race
duration of 120 s. For each experiment, 1000 samples were recorded for lf;e“alrtin o7 1000
each fault condition and 2000 samples for the health condition, with roningg
each sample containing 2048 data points. The training set included 800 element fault
samples from the healthy state, and 200 health state samples were Bearing cage  G8 1000
reserved for validation. The test dataset contained 1000 samples rep- fault
resenting both the health and fault states. ]];eft axle Health LAO 2000
oxes Bearing LAl 1000
The external equipment fault datasets as one of the pseudo-fault data inner race
are obtained from the high-speed train axle box bearing test bench and fault
the gearbox test bench, as shown in Fig. 9. The specific types and Bearing LA2 1000
quantities of the pseudo-fault datasets are summarized in Table 2. The ?;‘Jletr race
high-speed train axle box bearing test bench is capable of simulating Bearing LAS 1000
three single fault scenarios and two composite fault scenarios. On the rolling
other hand, the gearbox test bench can simulate a total of fourteen fault element fault
scenarios, including six single fault scenarios and eight composite fault Bearing cage  LA4 1000
scenarios. Additionally, fifteen OODD were generated.using the 0.0!)D Right axle S:;;th RAO 2000
Generator. All pseudo-fault datasets are used exclusively as training boxes
datasets.
Component- Gearboxes Gear cracked  G1+ G5 1000
level tooth,
4.2. Experimental results compound- Bearing
fault inner race
The PF-ERN training setup parameters include a learning rate of Gearboxes 2:;: worn 624 G5 1000
0.001, a batch size of 8, and the Adam optimizer. Prior to performing tooth,
fault detection and localization using the PF-ERN method on the TTS, Bearing
the HB value must first be determined. The HB value range is set be- inner race
tween 0.9 and 0.99, and the optimal HB value for each key component is falt
identified using the validation dataset. Fig. 10 displays the average ac- Gearboxes tGeat;mlssmg G3+G5 1000
curacy of the validation dataset for various HB values, with each value Boe(;ri;lg
being tested in 10 repeated trials. The PF-ERN method consistently inner race
achieves detection accuracy than 90 % across all HB values. When the fault
HB value is configured to 0.95, the detection accuracy at each key Gearboxes Gear chipped G4+ G5 1000
component is relatively balanced leading to the selection of 0.95 as the gz:r};;g
optimal HB values. inner race
The PF-ERN method is initially evaluated in the context of single fault
fault detection and localization modes to assess its effectiveness. As the Leftaxlebox  Bearing LAL+ LA2 1000
dataset lacks single fault data for the right axle box, the focus of the tests ;';Eletr race
is on other components for fault detection. The test results, summarized Bearing
in Fig. 11, are derived by averaging data from ten identical trials to outer race
minimize error. The PF-ERN method demonstrates excellent perfor- fault
mance on the motor and left axle box, with accuracy and recall rates Leftaxlebox  Bearing LA2+ LA3 1000
exceeding 97.5 %, and many reaching up to 99.5 %. For fault state M2, ?::letr race
M3, and LA3, both accuracy and recall rates are perfect at 100 %, Bearing
indicating flawless detection. However, the performance on the gearbox rolling
is less robust compared to the other components. For faults state such as _— element fault
G6 and G7, detection results approach 100 %, while for fault state like (continued on next page)

G2 and G4, accuracy and recall rates remain just above 60 %. The
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Table 1 (continued) Table 1 (continued)

Mode Fault Fault type Fault code Sample Mode Fault Fault type Fault code Sample
location size location size
Leftaxlebox  Bearing LA2+ LA4 1000 inner race

outer race fault
fault, Motor, Left Bowed axis, M1+LA1 1000
Bearing cage axle box Bearing
fault inner race
Leftaxlebox  Bearing LA1+ LA2+ LA3 1000 fault
inner race Gearbox, Gear missing G3+LA1 1000
fault, Left axle box tooth,
Bearing Bearing
outer race inner race
fault, fault
Bearing Left axle Bearing LAl, RA1 1000
rolling box, Right inner race
element fault axle box fault,
Leftaxlebox  Bearing LA1+ LA2+ LA4 1000 Bearing
inner race inner race
fault, fault
Bearing Motor, Short circuit, M1+G3+LA1 1000
outer race Gearbox, Gear missing
fault, Leftaxlebox  tooth,
Bearing cage Bearing
fault inner race
Leftaxlebox  Bearing LA1+LA2+LA3+LA4 1000 fault
inner race Motor, Short circuit, M1+G5+LA1 1000
fault, Gearbox, Bearing
Bearing Leftaxlebox  inner race
outer race fault,
fault, Bearing
Bearing inner race
rolling fault
element Motor, Broken rotor M2+G3+LA1 1000
fault, Gearbox, bar, Gear
Bearing cage Leftaxlebox  missing
fault tooth,
Beari
System-level Motor, Short circuit, M1+G3 1000 . caring
.. inner race
compound-  Gearbox Gear missing fault
fault tooth o Motor, Broken rotor M2+G5+LA1 1000
Motor, Short circuit, M1+G5 1000 .
Gearb Beari Gearbox, bar, Bearing
carbox . caring Leftaxlebox  inner race
inner race
fault,
fault Bearin
Motor, Broken rotor M2+G3 1000 . g
inner race
Gearbox bar, Gear
issing tooth fault
missing too Motor, Bowed axis, ~ M4+G3+LAl 1000
Motor, Broken rotor M2+G5 1000 .
Gearb bar. Beari Gearbox, Gear missing
carbox 5 ar, bearing Leftaxlebox  tooth,
inner race Bearing
fault inner race
Motor, Bearing M3+G3 1000 fault
Gearbox fault, Gear Motor, Bowed axis,  M4+G5+LA1 1000
missing tooth .
A Gearbox, Bearing
Motor, Bearing M3+G5 1000 .
Left axle box inner race
Gearbox fault,
Beart fault,
. caring Bearing
inner race .
inner race
fault fault
Motor, Bowed axis,  M4+G3 1000 Motor, Left  Short circuit, ~ M1+LA1+ RA1 1000
Gearbox Gear missing .
axle box, Bearing
tooth Right axle inner race
Motor, Bowed axis, ~ M4+G3 1000 &
N box fault,
Gearbox Bearing :
. Bearing
inner race .
inner race
fault fault
Motor, Left Shor.t cireult, MI-+LAT 1000 Motor, Left Broken rotor M2+LA1+ RA1 1000
axle box Bearing .
. axle box, bar, Bearing
inner race i i
Right axle inner race
fault
box fault,
Motor, Left Broken rotor MI1+LA1 1000 .
. Bearing
axle box bar, Bearing .
E inner race
inner race
fault fault
au
Motor, Short circuit, M1+G5+LAl1+ RA1 1000
Motor, Left Bearing M1+LA1 1000 . HESHLALE
Gearbox, Bearing
axle box fault, .
’ Left axle inner race
Bearing
fault,

(continued on next page)
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Table 1 (continued)

Mode Fault Fault type Fault code Sample
location size
box, Right Bearing
axle box inner race

fault,
Bearing
inner race
fault

findings demonstrate that the PF-ERN approach effectively identifies
and pinpoints faults within the TTS under diverse fault conditions.

Fig. 12 displays the distribution of relation scores generated by the
PF-ERN method across various states of different components. These
relation scores, ranging from O to 1, are visualized using color bars that
transition from red (indicating fault states) to green (representing health
states). The scores are computed based on the model’s similarity
assessment between feature pairs of the input data and reference health
states, with higher scores reflecting greater similarity to healthy con-
ditions. In most instances, the color bars are predominantly either red or
green, demonstrating the PF-ERN method’s ability to accurately differ-
entiate between fault and health states. This indicates that the model
effectively evaluates feature pair similarity, yielding reliable relation
scores for fault detection. However, for fault types G3 and G4 in the
gearbox, we observe a mixture of green and red bars, signaling a higher
incidence of misclassifications. This can be attributed to the complexity
of these fault types, which may produce feature patterns that partially
resemble healthy states, posing challenges for accurate detection. These
misclassifications point to potential areas for enhancing the model’s
performance, such as refining feature extraction techniques or
improving similarity metrics. Nevertheless, the overall findings in
Fig. 13 affirm that the PF-ERN method excels at detecting and localizing
faults in the TTS by assessing feature pair similarity, with only specific

tooth

Broken rotor bar

Bowed axis

Bearing fault

(a)

Gear cracked

Bearing inner
race fault

2

Bearing inner
race fault
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cases showing reduced performance.

Furthermore, Fig. 13 provides a supplementary perspective on un-
derstanding model performance by visualizing the feature distributions
across different components. The results reveal that for the motor
component, the features of the healthy state exhibit almost no overlap
with those of the faulty states, enabling clear separation. This feature
distribution aligns closely with the relation scores for the motor shown
in Fig. 12, highlighting the model’s reliability in distinguishing motor
states. In contrast, the feature distribution for the gearbox component
presents a more complex scenario. While most faulty states can be
differentiated from the healthy state, the features of faults G2, G3, and
G4 show significant overlap with the healthy state. This overlap directly
contributes to the alternating red and green color bars observed in the
gearbox relation scores in Fig. 12 for faults G2, G3, and G4, indicating a
higher misclassification rate for these specific faults. Upon further
analysis, this misclassification likely arises from the similarity in feature
patterns between faults G2, G3, and G4 and the healthy state in certain
key dimensions, making it difficult for the model to fully distinguish
them. Overall, the PF-ERN method demonstrates effective differentia-
tion between healthy and faulty states in TTS, underscoring its practical
value in fault detection, while also pointing to potential areas for
improvement when addressing complex fault features.

4.3. Result discussion

To systematically analyze the impact of pseudo-fault data on the
fault detection performance of the PF-ERN method, a motor component
fault detection experiment is specifically designed. In this experiment,
the pseudo-fault dataset was generated using the Soft Brownian Offset
technique, with the key parameter k set to 7. This parameter value was
selected based on experimental results from reference (Moller et al.,
2021), striking a balance between computational efficiency and the
quality of the generated pseudo-fault data. As shown in Fig. 14, the

3
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Bearing rolling
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Fig. 8. Faults of different transmission components. (a) Motor. (b) Gearbox. (c) Axle box.
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Fig. 9. Experimental bench for external equipment failures as part of the generation of pseudo-fault data. (a) high-speed train axle box bearing test bench; (b)

gearbox test bench.

Table 2
Detailed description of data construction for the Pseudo-fault data.
Pseudo-fault data Fault type Sample
size
High-speed train axle box Bearing inner ring fault 1000
test bench Bearing outer ring fault 1000

Bearing rolling element fault 1000
Bearing inner race fault, Bearing outer 1000
race fault
Bearing inner race fault, Bearing 1000
rolling element fault

Gearbox test bench Broken tooth 1000
Lacking tooth 1000
Cracked tooth 1000
Coupling loose 1000
Bearing roller wear 1000
Bearing outer ring wear 1000
Broken tooth, Lacking tooth 1000
Broken tooth, Cracked tooth 1000
Broken tooth, Coupling loose 1000
Broken tooth, Bearing roller wear 1000
Broken tooth, Bearing outer ring wear 1000
Lacking tooth, Coupling loose 1000
Lacking tooth, Bearing roller wear 1000
Lacking tooth, Bearing outer ring wear 1000

Out-of-distribution data fifteen out-of-distribution data 15 x 1000
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detection accuracy of the PF-ERN method increases progressively with
the inclusion of additional external equipment fault types and OODD
fault types. However, this improvement plateaus beyond a certain
threshold, where further diversification of fault types yields only
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Fig. 13. Visualization of features between different states of different key components.
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marginal gains in accuracy. This trend suggests that while the diversity
of pseudo-fault types significantly enhances the method’s detection
capability, there exists an intrinsic limit beyond which additional vari-
ety contributes little to performance, likely due to saturation in the
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model’s ability to differentiate fault signatures. The challenge of pin-
pointing the exact number of pseudo-fault types required for optimal
performance highlights a practical consideration: when computational
resources permit, adopting a broad spectrum of pseudo-fault types is
advantageous. This approach not only reduces the risk of underfitting
caused by limited fault diversity but also strengthens the model’s
robustness, enabling it to generalize effectively across varied fault
conditions encountered in real-world scenarios.

To investigate the contributions of RSFE and KANRE to the detection
performance of the PF-ERN method, we conducted experiments testing
various model combinations, including CNN, AlexNet, ResNet, RSN, and
KAN. As illustrated in Fig. 15, all tested configurations achieved detec-
tion accuracies exceeding 91 %, underscoring the robustness and
versatility of the PF-ERN framework across diverse deep learning ar-
chitectures. This consistent high performance suggests that PF-ERN is
highly adaptable, maintaining effectiveness regardless of the backbone
network employed. Among the evaluated combinations, the pairing of
RSN as the RSFE and KAN as the KANRE distinguished itself by
achieving an exceptional detection accuracy of 99 %, markedly sur-
passing other configurations. This standout result highlights a powerful
synergy between RSN and KAN, positioning this combination as the
optimal setup within the PF-ERN framework. The superior performance
can be attributed to the complementary strengths of RSFE’s feature
extraction capabilities and KANRE's relational evaluation prowess,
which together maximize the method’s fault detection precision. Based
on these compelling findings, we have selected the RSN and KAN com-
bination as the focal point for subsequent experiments. This decision not
only capitalizes on the observed synergy but also establishes a robust
foundation for further enhancing detection accuracy.

4.4. Complex fault diagnosis scenarios

To further validate the superior performance of the proposed PF-ERN
method, fault detection is tested under various compound fault sce-
narios. As shown in Table 1, compound faults are categorized into
component-level and system-level compound faults. The component-
level faults refer to cases where multiple fault types occur simulta-
neously within a single component, while system-level faults involve the
simultaneous failure of multiple components.

Fig. 16 showcases the effectiveness of the PF-ERN method in
detecting component-level compound faults, achieving remarkable ac-
curacy in both dual and quadruple fault scenarios. The detection results
for faulty components are presented here. In quadruple fault cases,
precision and recall rates exceed 95 %, markedly outperforming those in
dual fault scenarios. This enhancement suggests that the presence of
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Fig. 15. Influence of different selection of RSFE and KANRE on the detection
performance of PF-ERN method.
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multiple simultaneous fault types strengthens fault signals, making
anomalies more distinct. As a result, PF-ERN’s pseudo-fault data
enhancement strategy and feature concatenation mechanism are effec-
tively harnessed, enabling highly accurate fault diagnosis.

Similarly, Fig. 17 illustrates the detection results for system-level
compound faults. The PF-ERN method delivers average precision and
recall rates above 96 % when identifying faults in the motor, left axle
box, and right axle box, underscoring its robustness and versatility
across subsystems. While detection performance for gearbox faults is
slightly lower, the method maintains strong overall consistency and
reliability. The cornerstone of PF-ERN’s success lies in its feature
concatenation mechanism, which pairs health state data with pseudo-
fault data. This approach reveals attributes unique to the health state
and intrinsic to its condition, greatly improving the model’s ability to
differentiate between faulty and healthy states. Consequently, PF-ERN
sustains high detection accuracy even in intricate compound fault sce-
narios, establishing a solid technical basis for precise fault detection and
localization in TTS.

4.5. Comparison analysis

This study conducts a comprehensive comparison of deep learning,
TL, and few-shot learning (FSL) methods for fault detection in TTS, with
a focus on scenarios where fault samples are scarce or unavailable. The
deep learning approaches evaluated include CNN, RSN, and autoen-
coders. For TL methods, Domain-Adversarial Neural Network (DANN)
(Ganin et al., 2016) and Deep Subdomain Adaptation Network (DSAN)
(Zhu et al., 2021) are assessed, Matching Network (MN) Matching
Network (MN) (Vinyals et al., 2016) and Conditional Self-Supervised
Learning (CSS) (Wang et al., 2020) represent FSL techniques. These
methods are benchmarked against the proposed PF-ERN to evaluate
their effectiveness across three fault conditions: single fault mode,
component-level compound fault mode, and system-level compound
fault mode. To ensure a fair comparison, all models—CNN, RSN,
autoencoder, DANN, DSAN, MN, and CSS—were trained, validated, and
tested using the same datasets and training parameters as PF-ERN,
including learning rate, batch size, and optimizer. The network archi-
tectures were also standardized to align with PF-ERN’s structure,
minimizing the influence of hyperparameter discrepancies and isolating
performance differences to the models’ inherent capabilities.

Fig. 18 presents the fault detection performance of these techniques
under the three specified fault conditions. A notable observation is that
detection accuracy remains relatively stable across all methods as fault
complexity increases. This stability can be attributed to the amplified
distinction between fault and healthy signals in more complex fault
modes, which facilitates detection despite the growing intricacy.
Notably, Deep learning methods, specifically CNN and ResNet, exhibit
the weakest performance, with average accuracies consistently below
60 %. Trained exclusively on health states and pseudo-fault data, these
models struggle to generalize to unseen fault types encountered during
testing. Their reliance on patterns observed in the training data limits
their adaptability, rendering them less effective for detecting novel TTS
faults. The autoencoder, ranking third in detection accuracy, adopts a
different approach by constructing a health index from healthy data and
comparing new inputs against it. While this method excels at identifying
deviations from normalcy, its exclusive reliance on healthy state data
makes it hypersensitive to minor variations within that state. Conse-
quently, it often produces false positives when encountering faults not
explicitly represented during training, undermining its reliability.

Similarly, the performance of these TL methods is moderate,
achieving an average detection accuracy of approximately 70 %. In this
context, the source domain comprises health states and pseudo-faults,
while the target domain includes both health and actual fault states.
Despite their ability to adapt knowledge across domains, these methods
face challenges due to significant distribution shifts between pseudo-
fault and real fault data. This discrepancy hampers their capacity to
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Fig. 17. Detection results of PF-ERN in System-level compound-fault scenario. (a) Accuracy; (b) Recall.
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Fig. 18. Differences in detection performance among various methods. (a) Accuracy; (b) Recall.
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Table 3
Comparison of different methods in terms of training time and detection time.

Method Training time (min) Detection time (sec)
CNN 18.4 32.4
RSN 20.8 35.1
DANN 30.7 48.6
DSAN 36.4 50.9
Autoencoder 18.9 335
MN 24.5 44.5
CSs 35.6 132.4
PF-ERN 30.9 96.2

extract domain-invariant features, resulting in suboptimal knowledge
transfer and detection performance across varying fault domains. Few-
shot learning methods exhibit competitive performance, securing the
second-best detection results. These methods assess fault states by
measuring similarity between observed samples and healthy states,
leveraging health-unique features across different states for classifica-
tion. However, their approach overlooks health-inherent features within
a single state, which can compromise classification precision and limit
their effectiveness compared to more comprehensive methods.

In contrast, The proposed PF-ERN method stands out as the top
performer, surpassing few-shot learning methods by at least 5 % in ac-
curacy. Its superiority stems from a sophisticated analysis of relational
patterns between feature pairs, integrating both health-inherent features
within the same state and health-unique features across different states.
This dual-focus feature extraction enables PF-ERN to capture a more
complete representation of fault characteristics, significantly enhancing
its detection capabilities. This comparative evaluation underscores the
strengths and limitations of various fault detection techniques in TTS
systems. While deep learning methods like CNN and ResNet struggle
with generalization, and transfer learning methods like DANN and
DSAN are constrained by domain shifts, few-shot learning approaches
like MN and CSS offer competitive but incomplete solutions. The
autoencoder provides a moderate alternative but is prone to false posi-
tives. In contrast, PF-ERN’s robust feature analysis positions it as the
most effective method, offering superior accuracy and adaptability for
fault detection in TTS, particularly under data-scarce conditions.

Furthermore, to clearly analyze the performance differences in
training and testing times across methods, multiple approaches were
compared under a unified experimental environment (equipped with an
NVIDIA GeForce RTX 3060 GPU, 12 GB memory). Table 3 presents the
time comparison results for training and testing phases. The proposed
PF-ERN method requires slightly more training time than some methods
but is not the most time-consuming (compared to the CSS method). In
the testing phase, its time is also marginally higher. However, Table 1
reflects the total time for processing the entire sample set, while the
testing time for a single sample is only milliseconds, fully meeting real-
world industrial real-time requirements. Analysis shows that, despite
slightly higher time complexity, the proposed PF-ERN method’s signif-
icant advantage in fault detection accuracy (see Fig. 18) strongly dem-
onstrates its practicality and efficiency for industrial applications.

5. Conclusion

This study presents an advanced PE-ERN model tailored for identi-
fying and locating faults within TTS, tackling the issue of sparse or ab-
sent fault data. By leveraging pseudo-fault data generated through a
combination of external equipment fault datasets and OODD created via
soft Brownian offset, The ability of the PE-ERN to detect and localize
faults is effectively enhanced. The PE-ERN also incorporates the FCM to
create feature pairs, capturing both health-unique and health-inherent
attributes, which significantly improves fault detection performance.
Experimental results on a subway TTS demonstrate that the proposed
PE-ERN method outperforms existing fault detection models. The PE-
ERN method achieved fault detection accuracy exceeding 97 % for

16

Engineering Applications of Artificial Intelligence 158 (2025) 111515

most fault states, with traction motors and axle boxes performing
particularly well (approaching 99 %). The inclusion of pseudo-fault data
significantly enhanced detection and localization, with performance
improving as the number of pseudo-fault types increased. This high-
lights the importance of using diverse pseudo-fault data, especially when
actual fault data is scarce. The FCM, which feature pairs health and
pseudo-fault data, improved the model’s ability to differentiate between
healthy and faulty states, enhancing accuracy and sensitivity, particu-
larly in noisy environments. The method demonstrated strong perfor-
mance in both component-level and system-level compound fault
scenarios, achieving average accuracy and recall rates above 95 %.

Despite its success, the method has certain limitations. The detection
performance still relies on the quality and diversity of the pseudo-fault
data, and the model’s accuracy could further improve with more
comprehensive fault data. Additionally, the proposed approach may
face challenges in real-time applications, particularly with more dy-
namic operational conditions.

In future work, the integration of a broader range of fault scenarios
and real-time fault detection capabilities will be explored. The pseudo-
fault data generation process will be further optimized, with a focus
on generalizing it to produce data representative of multiple domains.
Additionally, the method will be extended to cross-domain fault diag-
nosis using techniques such as domain adaptation and transfer learning
to address differences in data distribution across various domains. This
extension is expected to enhance the model’s robustness and applica-
bility in diverse industrial environments, establishing it as a more uni-
versal tool for fault detection and localization. Furthermore, the
relational network architecture will be deepened to improve model
performance. Meta-learning frameworks will also be investigated to
enhance generalization across imbalanced datasets and open-set
conditions.
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